Vocabulary

Name	Translate	Name	Translate
Right angle	直角 =90	pentagon	五边形
Obtuse angle	纯角 90-180	hexagon	六边形
Acute angle	锐角 <90	heptagon	七边形
reflex angle	反射角 180-360	octagon	八边形
polygon	多边形	nonagon	九边形
congruent	全等的 Similar	decagon	士边形
Alternative angles	内错角	quadrilateral	四边形
Parallelogram	平行四边形		

1. Angles and Lines

(1) basic types

(2) Angles at different positions

- Angles at a point $a + b + c + d + e = 360^{\circ}$
- Angles on a straight line $a + b + c = 180^{\circ}$, $d + e = 180^{\circ}$ $e + a + b = 180^{\circ}$ and $c + d = 180^{\circ}$
- Vertically opposite angles c = e and a + b = d

(3) Types of angles

Arrows show that lines are parallel.

A **transversal** is a line that crosses parallel lines.

- Alternate angles \uparrow d = f c = eLook for a Z or S shape.
- Corresponding angles $\begin{bmatrix} \hat{p} \end{bmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $a = e \quad b = f \quad c = g \quad d = h$ Look for a \mathbf{F} or \mathbf{F} shape,

- Alternate angles are equal.
- Corresponding angles are equal.
- Interior angles add up to 180°.

(4) Supplementary angles VS complementary angles $\frac{1}{4}$

Angles that add up to 180° are said to be supplementary.

X.B

爾(《卡及=90)

Examples:

Work out the values of x, y and z.

Give reasons for your answers.

Complementary Suppl

$$X = 180^{\circ} - 48^{\circ} = 132^{\circ}$$

Q22N

x is a reflex angle.

180< X <360°

What type of angle is $\frac{1}{2}x$? $9^{\circ} < \frac{1}{2} \cdot x < 180^{\circ}$

Circle your answer.

acute

right angle

reflex

(Total 1 mark)

2. Bearing 方向角

Q21N

P and Q are two points.

Circle the bearing of P from Q.

072° 108° 252°

Q20N

Here is a map showing four towns, A, B, C and D.

It is drawn to scale on a square grid.

(a) Circle the direction of B from A.

North West

North East

South West

South East

(b) The actual distance of D from A is 54 km

Work out the actual distance of C from D.

(c) E is a different town.

The bearing of E from B is 090°

The bearing of E from C is 045°

Mark the position of *E* on the diagram.

3. Triangles and quadrilaterals

- The sum of the angles of a triangle = 180°.
- The exterior angle of a triangle = the sum of the interior opposite angles.
- The sum of the angles of a quadrilateral = 360°

Triangles

In a scalene triangle, the sides and angles are all different.

An **isosceles** triangle has 2 equal sides and 2 equal 'base' angles. An **equilateral** triangle has 3 equal sides. Each angle is 60°.

Quadrilaterals

In a **parallelogram** both pairs of opposite sides are parallel.

A trapezium has only 1 pair of parallel sides.

A rhombus is a parallelogram with 4 equal sides.

A kite has 2 pairs of equal adjacent sides.

A rectangle is a parallelogram whose angles are all right angles.

A square is a rectangle with 4 equal sides.

Examples:

1.

b What special type of triangle is *ADC*?

Q18N

ABC is a right-angled triangle.

BCD is a straight line.

ACDE is a kite with AC = AE

- (a) Show that $x = 51^{\circ}$
- (b) Work out the size of angle y.
- (a) $A = |80^{\circ} LB LBAC |80^{\circ} |80^{$

4. Symmetry

Reflection symmetry & Rotation symmetry

gives an identical-looking shape. The **order of rotation symmetry** is the number of ways a tracing of the shape would fit on top of it as the tracing is rotated through 360°.

Q18N

Here is a shape.

(a) Circle the number of lines of symmetry of the shape.

(b) Circle the order of rotational symmetry of the shape.

0 1 2 4

(1)

Q21N

Rectangle (R)

Parallelogram (P)

Equilateral triangle (E)

Isosceles triangle (I)

Put the letter of each shape into **one** box in the table.

One has been done for you.

Lines of symmetry

		0	1	2	3	4
f al y	1]			
	2	7		R		
	3	_				
	4					s

123

Order of rotational symmetry

EHC Stone

Circle:

The diagrams show the names of parts of a circle.

Every diameter of a circle is a line of symmetry.

The order of rotation symmetry is infinite.

Examples:

Two angles of this **isosceles trapezium** are equal to 48°.

5. Congruence and similarity

(1) Congruent

Congruent shapes are exactly equal in size and shape: equal sides and equal angles.

Example:

- **a** Is triangle A congruent to triangle B?
- **b** Is triangle *X* congruent to triangle *Y*?

(2) Similar

Similar shapes are the same shape but different in size. Their angles are equal.

AA: Two pairs of corresponding angles are equal.

SSS: Three pairs of corresponding sides are proportional.

SAS: Two pairs of corresponding sides are proportional and the corresponding angles between them are equal.

Linear scale factor

- The linear scale factor $=\frac{PQ}{AB} = \frac{QR}{BC} = \frac{RP}{CA}$ in Shapes:
- area scale factor = (linear scale factor)²
- volume scale factor = (linear scale factor)3.

E.g.

Linear scale factor = 1.5 = 4

Surface Area scale factor = 1.5^2

Volume scale factor $= 1.5^3$

Practice:

Q18N

Here are two similar triangles.

Not drawn accurately y cm y cm y cm1.4 cm

2.1 cm

Circle the value of y. y cm1.3 1.5 (Total 1 mark)

Q22N

The shorter sides of a rectangular wall are each 91 cm

A rectangular mirror is 42 cm by 35 cm

The mirror is placed on the wall as shown.

$$\frac{35}{91} = \frac{42}{91}$$
=) $y = 200+4 \times 2$

The rectangles are similar shapes.

Work out the value of x.

6. Polygon angles

- The sum of the interior angles of any polygon
 = (number of sides − 2) × 180°
- The sum of the exterior angles of any polygon ≠ 360°
- Exterior angle of a regular polygon = 360° ÷ number of sides.
- At each vertex: interior angle + exterior angle = 180°