
< means less than ≤ means less than or equal to ≠ means not equal to > means greater than ≥ means greater than or equal to Place the correct symbol <, > or = between the numbers in each pair. EXAMPL 5.07 5.7 **b** 397 379 c - 105 **d** -19-245.07 < 5.7 b 397 > 379 -19 > -24 -10 < 5 = 1.5 Round down To round a number look at the next, smaller, digit Round up 2.1 2.2 next digit = 0, 1, 2, 3 or 4 round down 2.15 2.10 next digit = 5, 6, 7, 8 or 9 round up. Round 72456.0374 to the nearest EXAMPL **b** hundred ten C thousand d tenth hundredth thousandth. 72460 72500 72456.0 € 72456.04 72 456.037 72000 (1 dp) (2dp)(3 dp) When rounding to significant figures, count from the first non-zero digit. a Round these numbers to 2 dp. EXAMPL dp means 'decimal places' and i 34.567 ii 3.887 126 iii 215.58754 sf means 'significant figures'. Round these numbers to 2 sf. i 39.54 ii 217 0.000455iii 12019 25.505 34.51 3.89 215.59 a ii iii 40 220 0.00046 12000 26 Multiplying or dividing a number by a power of 10 changes the place value of each digit. tens units tenths Multiplying by 10 moves the digits one place ÷100

1.5

2,20

×10

to the left. Dividing by 100 moves the digits

two places to the right.

Language Meaning Example

Place value	The value of a digit according to its position in a number.	123.4 2 means 2 tens = 20 4 means 4 tenths = $\frac{4}{10}$
Rounding	Expressing a number to a given degree of accuracy.	103.67 = 103.7 (1 dp) = 100 (1 sf)
Decimal places	The number of digits after the decimal point.	0.0055 = 0.0 (1 dp) = 0.006 (1 sf)
Significant figures	The number of digits after the first non-zero digit.	
Directed number	A number with a plus or minus sign in front of the number	4 -3 -2 -1 0 +1 +2 +3
Negative	A number that is less than zero	3 - 6 = -3
Estimate	An approximate calculation or a judgement of a quantity.	Estimate 68.89 × 21.1 ≈ 70 × 20 = 1400 Exact = 1453.579
Partitioning	Splitting a larger number into smaller numbers which add up to the original number.	85 + 25.6 = 85 + (15 + 10.6) = 100 + 10.6 = 110.6
Compensation	Replacing a number by a simpler approximate value and a correction.	158 - 18.9 = 158 - (20 - 1.1) = (158 - 20) + 1.1 = 139.1
Operations	Rules for processing numbers.	Addition, subtraction, multiplication and division.
Order of operations	The order in which operations have to be carried out to give the correct answer to a calculation.	$2 + 4 \times 3 - 1 = 2 + 12 - 1 = 13$ $(2 + 4) \times 3 - 1 = 6 \times 3 - 1 = 18 - 1 = 17$ $(2 + 4) \times (3 - 1) = 6 \times 2 = 12$ $2 + 4 \times (3 - 1) = 2 + 4 \times 2 = 2 + 8 = 10$
BIDMAS	An acronym for the correct order of operations: Brackets, Indices (or powers), Division or Multiplication, Addition or Subtraction.	

Objectives

By the end of this chapter, you will have learned how to ...

- Perform calculations involving roots and indices, including negative and fractional indices.
- Perform exact calculations involving fractions, surds and π .
- Work with numbers in standard form.

Calculating with roots and indices

Indices are defined for fractional and negative powers.

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$
 $x^{\frac{m}{n}} = (\sqrt[n]{x})^m$ $x^{-n} = \frac{1}{x^n}$ $x^0 = 1$

The same index laws we use for positive whole number powers also apply to fractional and negative powers.

$$X^a \times X^b = X^{a+b}$$
 $X^a \div X^b = X^{a-b}$ $(X^a)^b = X^a \times b$

$$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{(\sqrt[3]{27})^2} = \frac{1}{3^2} = \frac{1}{9}$$

$$27^{-\frac{1}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{3^2} = \frac{1}{9}$$

E.g.

/ Arrange these numbers in ascending order.

27⁻²/₃ 9³/₂ 16³/₄ (
$$\frac{1}{2}$$
)⁻⁴ ($\frac{1}{8}$)⁻⁵/₃ 250

250

(a) 250

Simplify these expressions.

a $2^{-\frac{3}{2}} \times 2^{\frac{1}{4}}$ (b $2^{-\frac{1}{6}} \div 2^{-\frac{1}{3}} = 2^{-\frac{1}{6} + \frac{1}{3}} = 2^{-\frac{1}{6} + \frac{1}{6}} = 2^{\frac{1}{6}}$

c $(2^{\frac{1}{6}} \div 2^{-\frac{1}{2}})^3$ $2^{\frac{3}{8}}$ d $2^{\frac{3}{2}} \times 2^{-2} \div 2^{\frac{1}{4}}$

e $(2^{\frac{5}{4}} \times 2^{-1})^{-\frac{3}{2}}$ f $(2^3 \div 2^{-\frac{1}{2}})^{-2} \times (2^{\frac{3}{2}} \div 2^{-1})$

Solve these equations.

a $(2^{-3x} \div 2^{-2})^2 = 2^{10}$

b $2^{\frac{3x}{2}} \times 2^{\frac{4x}{2}}$ $\frac{1}{2^2}$

c $(2^{4+x} \div 2^{2+2x})^2 = (2^{3x} \times 2^{x-2})^{-1}$ (b) $2^{\frac{9}{2}} \times 2^{\frac{1}{2}} \times 2^{\frac{1$

$$2 = 9$$

$$9^{\frac{3}{2}} = 9$$

$$9^{\frac{3}{2}} = 9^{\frac{3}{2}} = 3^{\frac{3}{2}} = 2$$

$$16^{\frac{3}{4}} = (16^{\frac{1}{4}})^{\frac{3}{2}} = 2 = 8$$

a
$$2^{-\frac{3}{2}} \times 2^{\frac{1}{4}}$$
 b $2^{-\frac{1}{6}} \div 2^{-\frac{1}{3}} = 2^{-\frac{1}{6} + 3} = 2^{-\frac{1}{6} + \frac{1}{6}} = 2^{\frac{1}{6}}$

c
$$(2^{\frac{1}{8}} \div 2^{-\frac{1}{2}})^3$$
 $2^{\frac{3}{2}} \times 2^{-2} \div 2^{\frac{1}{4}}$

e
$$(2^{\frac{5}{4}} \times 2^{-1})^{-\frac{3}{2}}$$
 f $(2^3 \div 2^{-\frac{1}{2}})^{-2} \times (2^{\frac{3}{2}} \div 2^{-1})$

a
$$(2^{-3x} \div 2^{-2})^2 = 2^{10}$$
 $+(\frac{3}{2}+1) = -\frac{14}{2}$

b
$$\frac{2^{3x} \times 2^4}{2^3 \times 2^{4x}} \neq \frac{1}{2^2}$$
 $= \frac{1}{2} + \frac{1}{2}$

$$(2^{4+x} \div 2^{2+2x})^2 = (2^{3x} \times 2^{x-2})^{-1}$$
 (b) 2^9 a-b

d
$$2^{\frac{3}{2}} \times 2^{x} \div 2^{\frac{2}{3}} = 2$$
e $(2^{\frac{1}{2}} \times 2^{x})^{\frac{1}{2}} = \frac{1}{(2^{\frac{1}{2}})^{\frac{1}{2}}} = 2$

e
$$(2^{\frac{1}{2}} \times 2^{x})^{\frac{1}{2}} = \frac{1}{(2^{\frac{1}{3}})^{3}} = 2$$

Exact Calculations

Question type: Evaulate these answers exactly

- To find an exact answer, do not use decimals. Instead use fractions in their lowest terms, simplified surds and multiples of π , as appropriate, throughout the calculation.
- A surd is in its simplest form when the smallest possible integer appears inside the square root.

E.g.

Calculate this expression

- exactly
- $\frac{b \text{ to 3 dp. } / \cdot 82 |}{7 + \sqrt{20}} = \frac{3 + \sqrt{5}}{5} = \frac{7 + \sqrt{5}!}{4!} = \frac{23 + 65!}{20}$

Evaluate these calculations exactly

- **a** $\frac{2}{5} \times \left(\frac{3}{4} + \frac{2}{3}\right)$ **b** $\left(\frac{2}{3} + \frac{4}{5}\right) \div \left(\frac{2}{5} + \frac{3}{7}\right)$
- c $\frac{5}{6} \div \frac{3^2 + 4^2}{10}$ d $\left(\frac{3}{7}\right)^2 \times \left(\frac{4}{5} \frac{1}{7}\right)$

 $\left(\frac{1}{2} + \frac{5}{9}\right)^2 + \left(\frac{2}{3}\right)^3$

Standard Form

 \times $10.8 \times 10^{5} = 1.08 \times 10^{6}$ A number in standard form is written $A \times 10^{n}$, where n is a positive or negative integer and $1 \le A < 10$.

1.

Simplify these expressions.

a (3.6×10^5) $\div (1.2 \times 10^3) =$ $\times /0^5$

b $(5.4 \times 10^4) \times (2 \times 10^{-3}) = /0.8 \times /0^7 = /.08 \times /0^7$

2.

A bumblebee has mass 5.2×10^{-5} kg.

An adult man has mass 70 kg.

A bumblebee can carry 75% of its mass.

How many bumblebees would it take to lift the man?

Give your answer in standard form to 3 sf.

 $A \times 0$

 $5.2\times10^{-5}\times3$ =1794771.795 =1796060 (179×10^{-1}) =1390000

[2]

[3]

Practice:

- 9 a The Wright Brothers Flyer I, the world's first aircraft, had a mass of 3.4×10^2 kg. The Saturn V Rocket had a mass of 2.96×10^6 kg. How many times heavier is a Saturn V than a Flyer I?
 - **b** Flyer I attained a speed of $3.04 \times 10^{0}\,\mathrm{ms^{-1}}$ on its first flight and the supersonic airliner, Concorde, attained a speed of $2.179 \times 10^{3}\,\mathrm{kmh^{-1}}$. How much faster was Concorde than Flyer I?
 - There are approximately 4.336×10^9 stars in our galaxy and about 5.776×10^3 stars visible to the naked eye. What fraction of the galaxy can we see?

 Write your fraction in the form $\frac{1}{x}$.
 - d A triathlon has 3 stages. The largest triathlon has a 3.8×10^0 km swim, a 1.8×10^2 km cycle ride and a 0.42195×10^2 km run. How far is the race in total? Give your answer as an ordinary number to 3 sf and in standard form.