Study goals:

- Review on definition (use the idea of limit)
- Differentiation rules (i.e. How to differentiate:)
 - Polynomials ax^n -n can be positive, negative or fractions
 - o Products f(x)g(x)
 - $\circ \quad \mathsf{Fractions}\,\frac{f(x)}{g(x)}$
- Equations of tangents & normals to the curve
- How to judge a function is increasing or decreasing
- **★** Turning (i.e. Stationary) points + maximum/minimum points
 - Second-order derivative
 - Real-world problem application

A13

Core content	Extension content
	understand and use the gradient function $\frac{\mathrm{d}y}{\mathrm{d}x}$ differentiation of kx^n where n is a positive integer or 0, and the sum of such functions

Notes: including expressions which need to be simplified first.

A15

Core content	Extension content
	use of differentiation to find stationary points on a curve: maxima, minima and points of inflection
	sketch a curve with known stationary points

positive negative fraction.

Lecture 1:

1. Review on definition

The gradient of a line segment is
 Change in the y direction
 Change in the x direction

 $f(x) = \chi$ Find the equation of the tangent to the curve $y = x^2$ at the

$$(x_{0},y_{0}).(x_{1},y_{1})$$

$$=\lim_{X\to 0} \frac{(x_{0}+\Delta x)^{2}-x_{0}^{2}}{\Delta x}$$

$$y' = x_0$$

$$|x_0, f(x_0)|$$

$$\lim_{x \to \infty} \frac{f(x_0 + \Delta x) - f(x_0)}{\int_{-\infty}^{\infty} \frac{f(x_0 + \Delta x)}{\int_{-\infty}^{\infty} \frac{f(x_0 + \Delta x) - f(x_0)}{\int_{-\infty}^{\infty} \frac{f(x_0 + \Delta x)}{\int_{-\infty}^{\infty} \frac{f(x_0 +$$

Hence,
$$k = f'(x_0) = y'|_{x=x_0} = \frac{\lambda m \tau}{\Delta \chi}$$
.

And $\frac{dy}{dx}$ is called the gradient function.

The symbol, δ , is used to mean a small change.

Summary:

- The gradient of a graph at a point is an instantaneous rate of change.
- This instantaneous rate of change is called a derivative.
- The process of finding a derivative is called differentiation.
- If y is a function given in terms of x, then the derivative of y is written either as y', or as $\frac{dy}{dx}$, $\frac{dy}{dx}$

Examples:

Examples:
$$y_{\chi=3}$$
 If $y = x^2$, find the value of y' at $x = 3$ $y_{\chi=3}$ $y_{\chi=3}$ $y_{\chi=3}$ $y_{\chi=3}$ $y_{\chi=3}$ $y_{\chi=3}$ $y_{\chi=3}$ $y_{\chi=3}$

$$\frac{(a+b)^{\circ}=1}{(a+b)^{\circ}=a+b}$$

$$\frac{1}{(a+b)^{\circ}=a+b}$$

$$\frac{1}{(a+b)$$

Differentiating polynomials

Try this table:

3. Differentiating constants and multiples of x

Constants

$$y = c$$
 ===> then $\frac{dy}{dx} =$ _____. (Think of the graph)

Multiples of x

Now, if y is a constant multiple of a function of x,

i.e.
$$y = ax^n$$
, what is $\frac{dy}{dx}$? $(x + y)^n = ax^n$

Now, if
$$y$$
 is a constant multiple of a function of x , i.e. $y = ax^n$, what is $\frac{dy}{dx}$? And $y = ax^n$, when $\frac{dy}{dx}$? And $y = ax^n$, where $\frac{dy}{dx}$? And $y = ax^n$, where $\frac{dy}{dx}$? And $y = ax^n$? An

For
$$4x^2$$
, $a = 4$, $n = 2$. Then $a = 2$. $y = 3x$. $y = 3x + 8x$.

$$\frac{1}{2}$$

<u>Lecture</u> 2

4. Differentiating products and fractions

AS level: split into separate terms

Example:

1. Product

Find
$$\frac{dy}{dx}$$
 when $y = (x-3)(x^2+7x-1)$.

$$y = (x-3)(x^2+7x-1) = x^3+4x^2-22x+3$$

$$\Rightarrow \frac{dy}{dx} = 3x^2+8x-22$$

2. Fraction

Find
$$\frac{dt}{dz}$$
 when $t = \frac{6z^2 + z - 4}{2z} = \frac{6}{2z} + \frac{z}{2z} - \frac{4}{2z}$

$$t = \frac{6z^2 + z - 4}{2z} = \frac{6z^2}{2z} + \frac{z}{2z} - \frac{4}{2z}$$

$$= 3z + \frac{1}{2} - \frac{2}{z}$$

$$\frac{dt}{dz} = 3 + 2z$$

**Extension: product and quotient rule

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)g'(x) + f'(x)g(x) \qquad \frac{d}{dx}\left[f(x)g(x)\right] = \frac{g(x)f'(x)-f(x)g'(x)}{g(x)} + \frac{f'(x)g(x)}{g(x)} \qquad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x)-f(x)g'(x)}{g(x)^{2}} + \frac{f'(y)-f(y)}{g(x)} + \frac{f'(y)-f(y)-f(y)}{g(x)} + \frac{f'(y)-f(y)-f(y)}{g(x)} + \frac$$

Example:

Find
$$\frac{dy}{dx}$$
 when $y = (x-3)(x^2+7x-1) = \int_{-\infty}^{\infty} g + \int_{-\infty}^{\infty} g + \int_{-\infty}^{\infty} f(x-1) = \int_{-\infty}^{\infty} g + \int_{-\infty}^{\infty} f(x-1) = \int_{-\infty}^{\infty} g + \int_{-\infty}^{\infty} g + \int_{-\infty}^{\infty} f(x-1) = \int_{-\infty}^{\infty} g + \int_{-\infty$

Practice:

Differentiate each of the following equations with respect to the variable concerned.

$$y = (3x-4)(x+5)$$

$$y = (4-z)^2$$

$$5 s = \frac{t^{-1} + 3t^2}{2t^2}$$

$$6) s = \frac{t^2 + t}{2t}$$

$$y = \left(\frac{1}{x}\right)(x^2 + 1)$$

$$8) y = \frac{z^3 - z}{\sqrt{z}}$$

$$9 y = 2x (3x^2 - 4)$$

$$0$$
 $s=(t+2)(t-2)$

$$11) s = \frac{t^3 - 2t^2 + 7t}{t^2}$$

$$y = \frac{\sqrt{x+7}}{x^2}$$