Study goals:
e Review on definition (use the idea of limit)
e Differentiation rules (i.e. How to differentiate:)

o Polynomials ax™-n can be positive, negative or fractions

o Products f(x)g(x)

o Fractions 1)
g(x)

e Equations of tangents & normals to the curve

e How to judge a function is increasing or decreasing

e Turning (i.e. Stationary) points + maximum/minimum points
o Second-order derivative

e Real-world problem application
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Core content Extension content
/ understand and use the gradient functio % \
T ARV
2 differentiation O@Nhere n is a positive integer or 0, // )
and the sum of such functions \\ hQ ot VQ

Notes: including expressions which need to be simplified first.
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Core content Extension content

use of differentiation to find stationary points on a
curve: maxima, minima and points of inflection

—

sketch a curve with known stationary points




Lecture 1:

1. Review on definition
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® The gradient of a line segment is

Change in the y direction
Change in the x direction’




Question:

Find the equation of the tangent to the curve y = x* at the |/. JC

point (1, 1). 14N {/\/LW/V\ éx e )
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Solution: O? 72—
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e Still look at this example:

Find the equation of the tangent to the curve y = ¥-at the ‘H X) :?(
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And % is called the gradient function.

The symbol, 9, is used to mean a small change.

Summary:

® The gradient of a graph at a point is an instantaneous rate of change.

® This instantaneous rate of change is called a derivative.
® The process of finding a derivative is called differentiation.
® Ifyisafunction y in terms of x, then the derivative of y is written

/
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Examples: g%) / ‘
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2. Differentiating polynomials @+J7) 0\ L +[(/O%b ! M

Try this table: Q %L}J( O‘L( ¢ lo Lo 5|



3. Differentiating constants and multiples of x @ ()<h

e Constants

—_i -
&f@j::" then z_i’ = O . ( Think of the graph ) :\»%: :?@ 0

Ify= x3 + 442, find the value of y' when x = 3 t\:;o

e Multiples of x ‘M' > Of'
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a. Diﬁerentiating@d@ (OM ) G- X

AS level: split into separate terms _j
Example:

1. Product j»_ C
Find % wheny=(x—3](§;_?y9;)~z?m -[jf;o
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Example:
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Practice:

Differentiate each of the following equations with respect to the variable
concerned.
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