Matrices

® A matrix is an array of numbers, usually written in brackets,
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® The order of a matrix is its size, given in terms of the C] lD
number of rows and the number of columns. Matricescan ~— =
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be any size, but you will only need to work with those that
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* We can only Add or Substract matrices wit@ <::,qr“-,
*  Add/Substract corresponding elements.



EXAMPLE 1

Which of the following a - e do you think you can add/subtract. Why?
What do you think the answer would be?
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For example, if A = (Z Z) then@\ = k(? 3) which is (f,zf ’;2)

EXAMPLE 2

A-(12) mreo -0, 2 1) B30 )



2.2 Matrix Multiplication " Condition A\,@ %%@1
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Matrices are NOT Commutative under multiplication

To multiply matrices, multiply each row from the first matrix by [ S <[ (x84 Lxb

each column from the second matrix. When multiplying a row by a 77 ﬁ{, L -

column the elements are multiplied in pairs and the results added. 5] ftex ] X\
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Step 1. Determine thé size\ of each Matrix

Step 2. Can this multiplication be performed? @X m) X mXR) (nxKk

........................................

Step 3. Mark up an empty Matrix of the correct size M =L .

Step 4. Write in calculations )
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Step 5. Calculate
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Show that NM = [ and MN =



Transformation

Review:

To describe a
® Reflection
® Rotation

® Translation
® Enlargement

—
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give

The position of the{ mirror Iinel

he angle of rotation
The direction (clockwise or anti-

clockwise)

The centre of rotation
The vector or the distance and direction

The scale factor S r 7|-xS ]: S
e centre of enlargep]ent
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How do | transform a point using a matrix?

» Apoint(x,y)ina2D plane can be transformed on to another point (x',y') by a mat I,y ]
St il A

o (x,y)isthe object and (x',y') is the image
1eind9e

* The coordinates of the image point can be found using matrix multiplication
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c Write down the image point coordinates, (x', y') h
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The transformation matrix 1 0 maps triangle P(2, 1) Q(3, 1) R(2,4) to P'Q'R’.
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a DrawPQRand P'Q'R’. b Give a full description of the transformation.
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Combining transformation matrices

BA'is the matrix that represents A followed by B.

Order is important when
transformation matrices are
combined:

AB is B followed by A.




1. Enlargement

Go -0

o k)

Represents an enlargement,
scale factor k, about the origin.
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a Find the matrix that represents i reflection in the x axis ii reflection in y = —x
i reflection in the x axis followed by reflection in y = —

b Descrlbe the single transformation that is equivalent to the combmed transformation.

I 0 0
i @ ( ) maps 1o (O) and (I) o ( l) Sketch what happens to the unit square.
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@ ifi Multiply the matrices, but take care with the order.
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(3) This is rotation through 90° clockwise about (0, 0).
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1_ ®@® Find and describe the transformation represented by each matrix. y
0
( ) rotates the unit square through 90° clockwise about (0, 0).
=150 (L |
0 -l o |
( | ) rotates the unit square 90° anticlockwise about (0, 0). 0 o
¥ SN
(o l) i the identity matrix - it maps the unit square onto itself. (—1) =

A rotation of 90° anticlockwise about (0, 0) followed by a rotation of 90° clockwise about (0, 0) returns
an object to its original position.




