2. Types of Transformation

4 Types:

To describe a	give
Reflection	The position of the mirror line
Rotation	The angle of rotation The direction (clockwise or anti- clockwise) The centre of rotation
Translation	The vector or the distance and direction
Enlargement	The scale factor The centre of enlargement

(1) Reflection

雅 镜像线

• **Reflection** flips a shape in a <u>mirror line</u> (also called a line of reflection) so that each point is the <u>same distance</u> from the mirror line as its reflected point.

• The shapes are congruent.

State what's the mirror line

G21

Core content	Extension content
describe and transform 2D shapes using single rotations, reflections, translations, or enlargements by a positive scale factor and distinguish properties that are preserved under particular transformations	including combined transformations and enlargements by fractional and negative scale factors

Notes: translations will be specified by a vector.

Study Goals:

- Types of transformation + distinguish
 - Rotation-center of rotation
 - o Reflection-mirror line
 - o Translation-vector
 - o Enlargement-scale factor (SF), center of enlargement
- Combined transformations

1. Area of a 2D shape

In the metric system, area is measured in mm², cm², m² or km²

- Area of a rectangle = length × width
- Area of a parallelogram
 - = base × perpendicular height
- Area of a triangle
 - $=\frac{1}{2}$ base \times perpendicular height
- Area of a trapezium
 - $=\frac{1}{2}$ sum of the parallel sides \times perpendicular height

Question Type 1: Describe a reflection

2 Identify the midpoints.

3 Join the midpoints.

4 State the equation of the line.

Describe the transformation of Shape A to Shape B

Question Type 2: reflect a 2D shape

In order to reflect a shape on a coordinate grid:

- 1 Draw the mirror line.
- 2 Reflect the first point.
- 3 Reflect the other points.
- 4 Finish the diagram.

Reflect Triangle P in the line y = 3:

(2) Rotation

Rotations are transformations that turn a shape around a fixed point.

To rotate a shape we need:

- a centre of rotation
- an angle of rotation (given in degrees)
- a **direction of rotation** either clockwise or anti-clockwise. (Anti-clockwise direction is sometimes known as counterclockwise direction).

Q: How to find the center of rotation

- Step 1: connect the corresponding points
- Step 2: draw the perpendicular bisector to this line
- Step 3: try another pair of points, Repeat the first two steps
- Step 4: The intersection of the two vertical bisectors is ours <u>center of rotation</u>

In an enlargement the distance from the centre of enlargement to every other point is multiplied by a scale factor (SF).

• SF > 1: enlarges

• 0 < SF < 1: smaller

In order to calculate a scale factor:

- 1 Choose a pair of corresponding sides.
- 2 Divide the length of the enlarged shape by the length of the original shape.
- Write down the scale factor.

Calculate the scale factor for the enlargement of Shape A to Shape B:

(4) Translation

- In a translation, all points move by the same distance in the same direction.
- The shapes are congruent.

E.g.

1 left (-3) (-2) down

- Translations involve a move in a horizontal direction and a move in a vertical direction.
 - ==> We use a **column vector** to help record the movement.

Shape A has been translated to shape B by the column vector

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 is $\begin{pmatrix} 3 \ right \\ 2 \ up \end{pmatrix}$

Question Type 1: Describe a translation

- 1 Pair up the points.
- 2 Work out the horizontal movement.
- 3 Work out the vertical movement.
- State the column vector.

Describe the translation of shape A to shape B

 $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$

 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$

**Common misconceptions:

• Check the scale of the coordinate grid

What is the column vector for the translation of shape P to shape Q?

• Interpreting the column vector

 Remember, the top number is for horizontal movement. (positive: moves right)

\ \ /

- The bottom number is for vertical movement. (positive: moves upwards)
- Object and image
 P->Q or Q->P

Question Type 2: translate a 2D shape

- 1 Choose a starting point on the shape.
- 2 Move it across. right /telt
- 3 Move it up or down.
- 4 Complete the rest of the shape.

Translate shape A by the column vector and label the image B

Example:

- In a reflection, rotation or translation the image and object shapes are congruent.
- In an enlargement the image and object shapes are similar.

2.

RECAP

To identify the type of transformation compare the object and the image.

Congruent shapes, same orientation ⇒ translation
 Give vector (or distance and direction)

) Vector

- Congruent shapes, image 'flipped' ⇒ reflection
 Give mirror line
- Congruent shapes, image 'turned' ⇒ rotation
 Give, centre, angle and direction
- Similar shapes ⇒ enlargement

enlarge

- image same orientation and enlarged scale factor > 1
- image same orientation and reduced scale factor between 0 and 1
- image inverted scale factor negative

Give centre and scale factor

3. Combined Transformations

Two or more transformations may be combined.

The result may be equivalent to a single transformation.

A Reflection of shape T in y = x - 1 followed by reflection in y = -x.

T, A and B are congruent. Overall T has rotated 180° about the point $(\frac{1}{2}, -\frac{1}{2})$.